One-loop calculation

So Chigusa
May 2020

Abstract

In this article, we summarize the useful formulas for the one-loop calculation based on the dimensional regularization. However, all the statements in this article are incorrect. Do not believe any of them, derive them by yourself, and tell me if you find something.

Preliminary

First of all, we work with the mostly-plus metric convention $g^{\mu\nu} = \mathrm{diag}(-1,1,1,1)$. Also, we adopt the dimensional regularization of divergence with taking the spacetime dimension $d=4-2\epsilon$.

Dirac Algebra

We first summarize some Dirac algebra in $4$ and $4-2\epsilon$ dimesnion. Followings are contraction formulas in $4$ [$4-2\epsilon$] dimension: \begin{align} \gamma^\mu \gamma_\mu &= 4\ [d], \\ \gamma^\mu \gamma^\nu \gamma_\mu &= -2\gamma^\nu\ [(2-d)\gamma^\nu], \\ \gamma^\mu \gamma^\nu \gamma^\rho \gamma_\mu &= 4g^{\nu\rho}\ [4g^{\nu\rho} - (4-d) \gamma^\nu \gamma^\rho],\\ \gamma^\mu \gamma^\nu \gamma^\rho \gamma^\sigma \gamma_\mu &= -2\gamma^\sigma \gamma^\rho \gamma^\nu\ [-2\gamma^\sigma \gamma^\rho \gamma^\nu + (4-d) \gamma^\nu \gamma^\rho \gamma^\sigma]. \end{align} On the other hand, the trace formulas are independent of the choice of the spacetime dimension and \begin{align} {\rm Tr}[ \gamma^\mu \gamma^\nu ] &= 4 g^{\mu\nu},\\ {\rm Tr}[ \gamma^\mu \gamma^\nu \gamma^\rho \gamma^\sigma ] &= 4(g^{\mu\nu} g^{\rho\sigma} - g^{\mu\rho} g^{\nu\sigma} + g^{\mu\sigma} g^{\nu\rho}),\\ {\rm Tr}[ \gamma^\mu \gamma^\nu \gamma^\rho \gamma^\sigma \gamma_5 ] &= -4i\epsilon^{\mu\nu\rho\sigma}. \end{align}

Feynman Parameters

Following equalities using Feynman parameters are useful to perform the $d$-dimensional integral \begin{align} \frac{1}{AB} &= \int_0^1 dxdy\ \delta(1-x-y) \frac{1}{[xA + yB]^2},\\ \frac{1}{AB^n} &= \int_0^1 dxdy\ \delta(1-x-y) \frac{ny^{n-1}}{[xA+yB]^{n-1}}, \\ \frac{1}{A_1\cdots A_n} &= \int_0^1 dx_1 \cdots dx_n\ \delta\left(1-\sum_{i=1}^{n} dx_i\right) \frac{(n-1)!}{\left[\sum_{i=1}^{n} x_i A_i\right]^n}, \end{align}

Loop Integral Formulas

Considering the $d$-dimensional integral, we obtain the general formula \begin{align} \mu^{4-d} \int \frac{d^d k}{(2\pi)^d} \frac{k^{2a}}{(k^2 - \Delta)^b} = i(-1)^{a-b} \frac{\mu^{4-d}}{(4\pi)^{d/2}} \frac{1}{\Delta^{b-a-\frac{d}{2}}} \frac{\Gamma (a+\frac{d}{2}) \Gamma (b-a-\frac{d}{2})}{\Gamma (b) \Gamma (\frac{d}{2})}. \end{align} In particular, following examples are convergent when we take $d=4$, \begin{align} \int \frac{d^4 k}{(2\pi)^4} \frac{1}{(k^2 - \Delta)^3} &= \frac{-i}{32\pi^2 \Delta},\\ \int \frac{d^4 k}{(2\pi)^4} \frac{k^2}{(k^2 - \Delta)^4} &= \frac{-i}{48\pi^2} \frac{1}{\Delta}, \\ \int \frac{d^4 k}{(2\pi)^4} \frac{1}{(k^2 - \Delta)^r} &= i\frac{(-1)^r}{(4\pi)^2} \frac{1}{(r-1)(r-2)} \frac{1}{\Delta^{r-2}},\\ \int \frac{d^4 k}{(2\pi)^4} \frac{k^2}{(k^2 - \Delta)^{r+1}} &= i\frac{(-1)^r}{(4\pi)^2} \frac{2}{r(r-1)(r-2)} \frac{1}{\Delta^{r-2}}, \end{align} with $r \geq 3$, while the divergent examples are \begin{align} \mu^{4-d} \int \frac{d^d k}{(2\pi)^d} \frac{1}{k^2 - \Delta} &= \frac{-i \mu^{4-d}}{(4\pi)^{d/2}} \frac{1}{\Delta^{1-d/2}} \Gamma\left( \frac{2-d}{2} \right) \simeq \frac{i\Delta}{16\pi^2} \left[ \frac{1}{\epsilon} + 1 + \ln \frac{\tilde{\mu}^2}{\Delta} \right], \\ \mu^{4-d} \int \frac{d^d k}{(2\pi)^d} \frac{1}{[k^2 - \Delta]^2} &= \frac{i \mu^{4-d}}{(4\pi)^{d/2}} \frac{1}{\Delta^{2-d/2}} \Gamma\left( \frac{4-d}{2} \right) \simeq \frac{i}{16\pi^2} \left[ \frac{1}{\epsilon} + \ln \frac{\tilde{\mu}^2}{\Delta} \right], \\ \mu^{4-d} \int \frac{d^d k}{(2\pi)^d} \frac{k^2}{[k^2 - \Delta]^2} &= -\frac{d}{2} \frac{i \mu^{4-d}}{(4\pi)^{d/2}} \frac{1}{\Delta^{1-d/2}} \Gamma\left( \frac{2-d}{2} \right) \simeq \frac{i\Delta}{16\pi^2} \left[ \frac{2}{\epsilon} + 1 + 2\ln \frac{\tilde{\mu}^2}{\Delta} \right],\\ \mu^{4-d} \int \frac{d^d k}{(2\pi)^d} \frac{k^4}{[k^2 - \Delta]^2} &= \frac{d}{2} \left( 1 + \frac{d}{2} \right) \frac{i\mu^{4-d}}{(4\pi)^{d/2}} \frac{1}{\Delta^{-d/2}} \Gamma \left( -\frac{d}{2} \right) \simeq \frac{i\Delta^2}{16\pi^2} \left[ \frac{3}{\epsilon} + 2 + 3\ln \frac{\tilde{\mu}^2}{\Delta} \right],\\ \mu^{4-d} \int \frac{d^d k}{(2\pi)^d} \frac{k^2}{[k^2 - \Delta]^3} &= \frac{d}{4} \frac{i \mu^{4-d}}{(4\pi)^{d/2}} \frac{1}{\Delta^{2-d/2}} \Gamma\left( \frac{4-d}{2} \right) \simeq \frac{i}{16\pi^2} \left[ \frac{1}{\epsilon} - \frac{1}{2} + \ln \frac{\tilde{\mu}^2}{\Delta} \right], \end{align} with $\tilde{\mu}^2 \equiv 4\pi e^{-\gamma_E} \mu^2$.

PaVe Functions

It is often useful to consider the Passarino-Veltoman basis of the one-loop integrals.1 In our case, there are only $4$ linearly independent basis of integrals, i.e., $1$-, $2$-, $3$-, and $4$-point scalar integrals. In the following, we will see them one by one and also see relevant reduction formulas of vector and tensor integrals.

1-point function

The only important integral is \begin{align} A(m) \equiv \frac{\mu^{4-d}}{i\pi^2} \int d^dk \frac{1}{k^2-m^2} = m^2 \left[ \frac{1}{\epsilon} + 1 + \ln \frac{\tilde{\mu}^2}{m^2} \right]. \end{align}

2-point functions

We define \begin{align} B_0; B_\mu; B_{\mu\nu}(p, m_1^2, m_2^2) \equiv \frac{\mu^{4-d}}{i\pi^2} \int d^dk \frac{1; k_\mu; k_\mu k_\nu}{(k^2-m_1^2)((k+p)^2-m_2^2)}. \end{align} Considering the covariance under the Lorentz transformation, we can define another set of functions, \begin{align} B_\mu &\equiv p_\mu B_1,\\ B_{\mu\nu} &\equiv p_\mu p_\nu B_{21} + g_{\mu\nu} B_{22}. \end{align} There are three relations among them: \begin{align} p^2 B_1 &= \frac{1}{2}\left[ A(m_1) - A(m_2) + (-p^2 + m_2^2 - m_1^2) B_0 \right],\\ p^2 B_{21} + B_{22} &= \frac{1}{2} \left[ A(m_2) + (-p^2 + m_2^2 - m_1^2) B_1 \right],\\ p^2 B_{21} + d B_{22} &= A(m_2) + m_1^2 B_0, \end{align} through with all vector and tensor integrals are decomposed into linear combinations of scalar integrals $A$ and $B_0$. Thus, we only need to calculate the expression of the scalar integral $B_0$, which is given by \begin{align} B_0 &= \frac{1}{\epsilon} + 2 + x_1 \log \left( \frac{x_1-1}{x_1} \right) + x_2 \log \left( \frac{x_2-1}{x_2} \right) - \log (1-x_1) - \log (x_2-1) + \log \left( \frac{\tilde{\mu}^2}{-p^2} \right), \end{align} where $x_i$ are the roots of $-p^2 x^2 + (p^2 - m_1^2 + m_2^2) x + m_1^2 = 0$. It is also useful to see the massless cases \begin{align} B_0(p,m^2,0) &= \frac{1}{\epsilon} + 2 + \ln \frac{\tilde{\mu}^2}{-p^2+m^2} + \frac{m^2}{p^2}\ln\frac{-p^2+m^2}{m^2},\\ B_0(p,0,0) &= \frac{1}{\epsilon} + 2 + \ln \frac{\tilde{\mu}^2}{-p^2},\\ \end{align} and the large mass limit \begin{align} B_0(0,m_i^2,m_j^2) &= \frac{1}{\epsilon} + 1 + \frac{m_i^2}{m_i^2 - m_j^2} \ln \frac{\tilde{\mu}^2}{m_i^2} - \frac{m_j^2}{m_i^2 - m_j^2} \ln \frac{\tilde{\mu}^2}{m_j^2},\\ B_0(0,M^2,M^2) &= \frac{1}{\epsilon} + \ln \frac{\tilde{\mu}^2}{M^2},\\ B_0(0,0,M^2) &= \frac{1}{\epsilon} + 1 + \ln\frac{\tilde{\mu}^2}{M^2}, \end{align} where we assume $m_{i,j}$ with different indices take different non-zero values. Note that the PaVe functions in the large mass limit obey the recurrence relations \begin{align} B_0(0,m_i^2,m_j^2) &= \frac{1}{m_i^2 - m_j^2} \left[ A_0(m_i) - A_0(m_j) \right], \end{align} and similar for higher point functions.

3-point functions

We define \begin{align} C_0(p_1^2,p_{12},p_2^2,m_1^2,m_2^2,m_3^2) \equiv \frac{\mu^{4-d}}{i\pi^2} \int d^dk \frac{1}{(k^2-m_1^2)((k+p_1)^2-m_2^2)((k+p_2)^2-m_3^2)}, \end{align} with $p_{12}\equiv p_1\cdot p_2$, and similar for vector and tensor integrals. The most general formula is too complicated to show and use, so we only focus on the specific limits here. By taking the large mass limit, we obtain \begin{align} C_0(0,0,0,m_i^2,m_j^2,m_k^2)&= \frac{m_i^2}{(m_i^2-m_j^2)(m_i^2-m_k^2)} \ln\frac{\tilde{\mu}^2}{m_i^2} + (\text{cycl.}),\\ C_0(0,0,0,m_i^2,m_i^2,m_j^2)&= -\frac{1}{m_i^2-m_j^2} + \frac{m_j^2}{(m_i^2-m_j^2)^2} \ln\frac{m_i^2}{m_j^2},\\ C_0(0,0,0,M^2,M^2,M^2)&=-\frac{1}{2M^2},\\ C_0(0,0,0,0,0,M^2)&=\frac{1}{M^2}\left[ \frac{1}{\epsilon_{\mathrm{IR}}} + \ln\frac{\tilde{\mu}^2}{M^2} + 1\right], \end{align} where $\epsilon_{\mathrm{IR}}=\frac{4-d}{2}$ is basically the same as $\epsilon$, but we add the subscript to clarify that it expresses the IR divergence in the limit $\epsilon_{\mathrm{IR}}\to 0$. We also obtain \begin{align} C_\mu(0,0,0,M^2,0,0)=-\frac{p_{1\mu} + p_{2\mu}}{M^2}\left[ \frac{1}{\epsilon_{\mathrm{IR}}} + \ln\frac{\tilde{\mu}^2}{M^2}\right]. \end{align}

4-point functions

We define \begin{align} D_0(p_1^2,p_2^2,p_3^2,p_{12},p_{23},p_{31},m_1^2,m_2^2,m_3^2,m_4^2) \equiv \frac{\mu^{4-d}}{i\pi^2} \int d^dk \frac{1}{(k^2-m_1^2)((k+p_1)^2-m_2^2)((k+p_2)^2-m_3^2)((k+p_3)^2-m_4^2)}. \end{align} In the large mass limit, we obtain \begin{align} D_0(0,0,0,0,0,0,m_i^2,m_j^2,m_k^2,m_\ell^2)&= \frac{m_i^2}{(m_i^2-m_j^2)(m_i^2-m_k^2)(m_i^2-m_\ell^2)} \ln\frac{\tilde{\mu}^2}{m_i^2} + (\text{cycl.}),\\ D_0(0,0,0,0,0,0,m_i^2,m_i^2,m_j^2,m_j^2)&= -\frac{2}{(m_i^2-m_j^2)^2} + \frac{m_i^2+m_j^2}{(m_i^2-m_j^2)^3} \ln\frac{m_i^2}{m_j^2}.\\ \end{align}

1. G. Passarino and M. Veltman, Nucl. Phys. B 160 (1979), 151-207

Back to the previous page